Imaging

To study the properties of individual PP1 isoforms in living cells, including their localization and interaction with targeting subunits, we have taken advantage of the in vivo approach of fusing PP1 to fluorescent reporter molecules, in this case chromatic variants of the green fluorescent protein (GFP) derived from the jellyfish Aequorea victoria. This “tags” the intracellular pool of the protein and allows analyses of dynamic properties in living cells. Their changing spatio-temporal distributions can be monitored both throughout the cell cycle and following cellular perturbations by time-lapse fluorescence microscopy, and turnover rates of intracellular pools of the protein calculated by fluorescence recovery after photobleaching (FRAP). Interactions with targeting subunits can be visualized in vivo by fluorescence resonance energy transfer (FRET), Bimolecular Fluorescence Complementation (BiFC) and Fluorescence Two-Hybrid (F2H) assays.

Live cell time-lapse imaging

For imaging live cells in glass bottom dishes or chamber slides, replace the standard growth medium with Phenol Red-free medium.  A heated environmental chamber supplied with 5% CO2 should maintain pH, but 20 mM HEPES can be added to the medium as a backup buffer.  Drug treatments can be added and washed out during imaging, as required.

 

Cell cycle progression can be monitored by Phase Contrast or DIC imaging but greater accuracy is obtained when chromosomes are marked with a fluorescent dye (e.g. Hoechst 33342) or expression of a fluorophore-tagged histone.  Prophase cells can be found by their characteristic condensed DNA pattern, and then followed through mitosis (minimizing the amount of light the cells are subjected to by keeping exposure times as low as possible while maintaining adequate resolution).  

PCNA is commonly used as a marker for G1 / S / G2 progression. For live imaging, cells stably expressing a fluorophore-tagged anti-PCNA nanobody are a good option.

Generating cell lines that stably express fluorophore-tagged proteins

Random Integration of Expression Plasmids

Bacterial Artificial Chromosome

CRISPR/Cas9 Gene Editing

Tagged protein is over expressed against a background of the endogenous protein. This overexpression should be minimized, and cell lines validated to ensure that the tagged protein is a reliable marker for the endogenous pools of protein.

Random integration of BACs, which include upstream and downstream regulatory elements, minimize overexpression of the tagged protein at the approximate level of the endogenous protein.

CRISPR/Cas9-based knocking of a fluorophore tag at the 5' or 3' end of the endogenous gene allows for direct observation of the endogenous protein.

FRAP analysis provides information about underlying binding events

A combination of FRAP analysis and measurement of nuclear retention following light permeabilization allowed us to rapidly identify the C-terminus of RepoMan as the region that governs association with chromatin.

In vivo assays to monitor protein-protein interactions

BiFC: In this technique the 2 proteins to be assessed are expressed as fusions to N- and C-terminal fragments of a fluorophore (e.g. YFP). Interaction of the 2 proteins brings the halves together and the fluorophore re-forms and can be excited to emit light.

FRET: In this technique the 2 proteins to be assessed are expressed as fusions to a donor and an acceptor fluorophore with sufficiently overlapping spectral profiles.  If the 2 proteins are in close proximity (< 10 nm), the excitation of the donor leads to transfer of some of its energy to the acceptor, which will in turn emit light. This "sensitized emission" can be monitored directly, or FLIM (Fluorescence Lifetime Imaging) can be used to monitor quenching of the donor.

In the example shown here, the bait is mCherry-tagged PP1, and it accumulates in a discrete spot in the nucleus.  A known GFP-interactor (e.g. targeting subunit) accumulates at this spot due to association with PP1. This approach is a quick way to confirm interaction with PP1, and to then test the effect of mutating suspected PP1 binding sites on this interaction.

F2H: In this technique a fluorophore- and LacR-tagged bait protein is anchored to an engineered gene locus by association with LacO repeat regions. This forms a discrete spot. Prey proteins tagged with a different fluorophore are then expressed in the cell.  Accumulation/colocalization with the bait protein at the gene locus confirms their interaction (although it is not necessarily direct).

Microscopy Courses at uOttawa

uOttawa undergraduate students in the Translational & Molecular Medicine (TMM) program can learn more about imaging by registering for the 4th year course TMM4911: Advanced Methods in Cell Biology and Microscopy. A combination of lecture-based learning with highly interactive hands-on workshops is used to first introduce the principles behind a range of imaging-based assays and then provide the opportunity for students to carry them out.  Active learning sessions, in collaboration with the Cell Biology & Image Acquisition core facility, will address the analysis, interpretation and critiquing of imaging data.  

uOttawa graduate students can learn more about modern methods in optical microscopy by registering for CMM5360: Imaging in Cell Biology.  This course touches on all aspects of biological imaging, providing a systematic and in-depth examination of the theory of image formation and the application of diverse imaging techniques to explore biological questions at the level of the single cell.  In particular, the course will emphasize the importance of proper sample preparation and highlight quantitative issues that are critical to the proper interpretation of images obtained with modern microscope systems.  Students will also learn how to critically read primary literature based on imaging approaches.  

Department of Cellular & Molecular Medicine

Ottawa Institute of Systems Biology

University of Ottawa

Ottawa, Canada

© 2019 by L Trinkle-Mulcahy
Proudly created with Wix.com